Office of the VC\&MD, MSRD, HYDERABAD-624.

CIRCULAR NO. 05/2009 - MED, Dt.01.04.2009

SUB: COST CONTROL - Control of Expenditure - Fixing of targets on MED Parameters for the year 2009-2010-Reg.

The financial health of an organization depends on maximization of the revenue and minimizing the operational costs. Keeping this in mind, every year targets on key parameters of maintenance, which influences the operational cost are prepared and communicated for making all efforts by one and all to excel. While finalizing the targets to the Regions, the ground realities and potentialities of the Regions are taken into consideration.

In the similar lines, the targets for the year 2009-10 in key MED parameters are worked out for the Regions basing on the best performance achieved by individual Region for the last three years and incrementing the same reasonably in different slabs and criteria. The details of the targets are furnished here under, parameter wise.

I. PHYSICAL PARAMETERS:

I. 1 HSD KMPL:

Description	Excl. Volvo	Volvo	Incl. Volvo
The target of HSD KMPL for the year 2008-09	5.40	3.10	5.36
Actual KMPL up to Feb'09	5.28	2.85	5.24
Variance over target	-0.12	-0.27	-0.12
Target proposed for 2009-10	$\mathbf{5 . 4 0}$	$\mathbf{3 . 1 0}$	$\mathbf{5 . 3 6}$

While fixing the targets, the following criteria is adopted.
> The best performance (excl. Volvo) among the years 2006-07, 2007-08 and 2008-09 of the Regions is adopted as base KMPL and incremented in different slabs for arriving the targets.
> An uniform target of 3.10 is adopted for Volvo vehicles.
> The effect of Meghdoot vehicles operation is also taken into consideration while fixing the targets.

HSD KMPL is the most important cost parameter and influences the financial health of the corporation to a great extent. By following the guidelines issued vide Circular no.19/2007-MED will definitely improve the KMPL. The Region/Zone wise targets worked out as above for the year 2009-10 are enclosed at ANNEXURE-I.

I.2. BREAKDOWN RATE:

Description	B.D.Rate
The target for the year 2008-09	0.11
Actual up to Feb'09	0.10
Variance over target	0.01
Target proposed for 2009-10	$\mathbf{0 . 0 9}$

> The B.D.Rate target is fixed basing on the best performance of the individual Regions during three years i.e. 2006-07, 2007-08 and 2008-09 (upto Jan'09) and reducing the same with different slabs.
> The Region/Zone wise targets thus arrived for the year 2009-10 are furnished at ANNEXURE-I.

Any reduction in breakdowns will have a remarkable impact on quality of operation and image of the corporation. Proper accounting and analysis for taking corrective action as envisaged in Circular no.09/2008-MED will definitely reduce the breakdowns.

I.3. PERCENTAGE OF MECHANICAL CANCELLATIONS:

Description	\% of Mech. Cancellations
The target for the year 2008-09	0.16
Actual up to Feb'09	0.16
Variance over target	0.00
Target proposed for 2009-10	$\mathbf{0 . 1 5}$

> The \% of Mech. Cancellations target is fixed basing on the best performance of the individual Regions during three years i.e. 2006-07, 2007-08 and 2008-09 (upto Jan'09) and reducing the same with different slabs.
> The Region/Zone wise targets thus arrived for the year 2009-10 are furnished at ANNEXURE-I.

This is a controllable parameter since cancellations are mainly on account of want of bus and late supply of bus, which also affect punctuality of the Services and passenger satisfaction. With improved quality of maintenance, regular inspection of Buses after maintenance \mathbb{C} avoiding off road position of vehicles at Depots, it is possible to reduce percentage of KMs cancelled due to mechanical reasons.

I.4. SPRING CONSUMPTION:

Description	Spring Consumption
The target for the year 2008-09	70
Actual up to Feb'09	63
Variance over target	-7
Target proposed for 2009-10	$\mathbf{6 0}$

$>$ The spring consumption per lakh Kms target is fixed basing on the best performance of the individual Regions during three years i.e. 2006-07, 2007-08 and 2008-09 (upto Jan'09) and reducing the same with different slabs.
$>$ The Region/Zone wise targets thus arrived for the year 2009-10 are furnished at ANNEXURE-I.

With improved maintenance practices like effective greasing, regular tightening of U bolts and replacement of spring assemblies in Sch.IV maintenance, it is possible to reduce the spring consumption. Hence challenging targets in respect of spring consumption per lakh KMs are fixed Region wise to reduce CPK on spares.

I.5. TOTAL LUB KMPL:

Description	Total Lub KMPL
The target for the year 2008-09	931
Actual up to Feb'09	964
Variance over target	33
Target proposed for 2009-10	$\mathbf{1 1 1 6}$

$>$ The total Lub oil KMPL Targets are fixed Region-wise for the year 200910 duly considering the volume of operation of different types of vehicles., the oil required for EOCs based on Vehicle manufacturers recommendations, oil for Air cleaners, washing plants, Generator set, FIP top up etc,.
$>$ The top up lub KMPL achieved by Regions upto Jan'09 is increased by 20% and oil consumption for top up is arrived.
$>$ The Region/Zone wise targets thus arrived for the year 2009-10 are furnished at ANNEXURE-I.

Exercising strict controls in usage of lubricant oils without compromising maintenance standards is the pre-requisite for conservation of lubricants. Better top up practices, avoiding leakages, timely top-overhauls and engine changes are some of the measures which influence this cost parameter. The starvation of engines and manipulation of accountal to project higher total lub KMPL shall be eliminated.

I.6. FLEET UTILISATION:

Description	Fleet Utilisation
The target for the year 2008-09	99.50
Actual up to Feb'09	99.52
Variance over target	0.02
Target proposed for 2009-10	$\mathbf{9 9 . 5 0}$

> The Corporation has achieved a Fleet Utilisation of 99.52 up to Feb’09 as against a target of 99.50 . This is a high figure $\&$ very close to ideal value of 100.00% and hence, same target of 99.50 was fixed for all Regions for the year 2009-10 also.
> The Region wise targets are furnished at ANNEXURE-I.

I.7. TYRES PERFORMANCE

Description	NTS
The target for the year 2008-09	1.49
Actual up to Feb'09	2.37
Variance over target	0.88
Target proposed for 2009-10	1.37

> New Tyre Scrap Rate target for the year 2009-10 is fixed by reducing the best i.e., lowest NTS during the last 3 years including 2008-09 up to Feb'09, by keeping 1.95 as the maximum NTS.
> Whenever the target such fixed is more than the last year's target, then the target fixed for the last year is continued for the year 2009-10.

Description	TTL
The target for the year 2008-09	1.91
Actual up to Feb'09	1.68
Variance over target	0.23
Target proposed for $\mathbf{2 0 0 9 - 1 0}$	1.89

> Total Tyre Life target for the year 2009-10 is fixed by taking the best performance during the last three years including 2008-09 up to Feb’09 and then by increasing the same as per the slabs.
> Whenever the target such fixed is more than the last year's target, then the target fixed for the last year is continued for the year 2009-10.
> The Region wise Targets are furnished at ANNEXURE-I.

With the improved tyre management and tyre maintenance practices stipulated in the circulars $11 / 2005,5 / 2008,12 / 2008,16 / 2008,20 / 2008$, and $3 / 2009$, it is quite possible to improve the performance of tyres which are major cost component and to achieve the given targets.

I. 8 LIFE OF MAJOR AGGREGATES

Target for achieving optimum lives on major aggregates are fixed for the year 2009-10. Implementation of preventive maintenance schedules, carrying out oil changes at stipulated mileages, timely rectification of minor defects on sub-assemblies will help to obtain optimum life from NEW/ C O aggregates and achieve targets. Drawl of CO Units will increase on account of the premature failure due to poor workmanship at workshops or improper maintenance at depots. Hence care shall be taken to avoid premature failures of units. The Region wise targets are furnished at Annexure-III.

II. COST PER KILOMETER ON MED PARAMETERS:

II.1.HSD OIL

Description	CPK on HSD
The target for the year 2008-09	616
Actual up to Feb'09	695
Variance over target	79
Target proposed for 2009-10	$\mathbf{6 2 2}$

$>$ The target for CPK on HSD oil for the year 2009-2010 is fixed by arriving at the average cost per litre of diesel as on 28.02.2009 for each Region and the target KMPL fixed for the year 2009-10. This takes care of the variation in cost of HSD oil on account of the transportation charges of diesel supplied by oil companies from their supply point.
$>$ The Region wise targets thus arrived are furnished at ANNEXURE-II.

II. 2 TYRES \& TUBES

Description	Tyres \& Tubes
The target for the year 2008-09	40
Actual up to Feb’09	54
Variance over target	14
Target proposed for 2009-10	49

$>$ The CPK Target on Tyres \& Tubes for the year 2009-10 is fixed by taking the best i.e., lowest CPK during the last 3 years including the year 200809 up to Feb'09
$>$ The Region-wise targets thus arrived are furnished at ANNEXURE-II.

II. 3 WORK SHOPS

Description	Workshops
The target for the year 2008-09	33
Actual up to Feb'09	39
Variance over target	6
Target proposed for 2009-10	37

> The CPK Target on Work Shops for the year 2009-10 is fixed by taking the best i.e., lower CPK during the last 3 years including the year 200809 up to Feb'09
> Work shops expenditure can be controlled by improving the life of aggregates on vehicles through better maintenance practices at depots, improving the quality of overhaul practices at zonal work shops and avoiding premature failures. The new vehicle induction in the recent past will also facilitate for reduction in demand.

II.4. STORES:

Description	CPK on Stores
The target for the year 2008-09	25
Actual up to Feb'09	32
Variance over target	$\mathbf{7}$
Target proposed for 2009-10	$\mathbf{2 7}$

> The best performance on CPK of stores of the individual Regions during three years i.e. 2006-07, 2007-08 and 2008-09 (upto Jan'09) is fixed as target for the year 2009-10.
> The Region wise targets are furnished at ANNEXURE-II
Stores expenditure can be controlled by reducing consumption of springs \& other costly spares through better maintenance practices

II.5. LUBRICANTS:

Description	CPK on Lubricants
The target for the year 2008-09	12
Actual up to Feb'09	17
Variance over target	5
Target proposed for 2009-10	$\mathbf{1 3}$

> The best performance on CPK of Lubricants of the individual Regions during three years i.e. 2006-07, 2007-08 and 2008-09 (upto Jan'09) is fixed as target for the year 2009-10.
> The Region wise targets are furnished at ANNEXURE-II.

Efforts are to be made to achieve the targets through improved maintenance practices, timely identification of vehicles for leakages and prompt attention.

The Regional Managers in turn are advised to fix targets Depot wise for all parameters basing on the above guidelines and communicate to Depots and to send a copy of the same to ED (E\&IT) for review. The Executive Directors of Zones and Regional Managers are advised to review the performance of the Depots with reference to the targets fixed and pull up the Managers not responding.

The Executive Directors of Zone, Regional Managers, Dy. chief Mechanical Engineers and Depot Managers are advised to take steps required to improve the performance for achieving the targets and are personally accountable for achieving targets in respect of Zone, Region and Depot in regard to all parameters.

Please acknowledge.

VICE CHAIRMAN \& MANAGING DIRECTOR

To

All the Executive Directors (Zone) (By Name)
Copy to: Director (Vig. \& security), OSD \&Secretary to Corporation, ED(E\&IT), ED(O\&MIS), ED (A\&P), FA \& CAO for information
Copy to: CME(O),CME(C\&B), CE (IT), CPM, CM(R\&T), CTM, CCOS, CFM \& CA for information
Copy to: All Regional Managers for necessary action
Copy to: Dy CME(O), Dy.CME(P),Dy.CME(C\&B), Dy.CME(IEU), , COS(C-I), COS(C-II) \& CSTO for information.
Copy to: Dy.CMEs for necessary action
Copy to: All DVMs of HYD and SCD Regions for necessary action
Copy to: All WMs, COSs, Dy.CAOs of all Zones $\&$ necessary action
Copy to: All Principals of ZSTC and TA/HPT for information
Copy to: All AMEs(T) for necessary action
Copy to: All AOs of Regions for necessary action
Copy to: All Depot Managers for necessary action.
Copy to: Manual Section/Head Office for filing.
Copy to: All Maintenance Incharges for necessary action.
REGION／ZONE WISE TARGETS ON PHYSICAL PARAMETERS FOR THE YEAR 2009－10

LE＇レ	68＇1	0G＇66	9レレレ	09	SLO	60.0	01．${ }^{\text {c }}$	98＇S	0ヵ゙S	NOIL＊YOdyOつ	
01゙し	00＇Z	09＇66	ELOL	OS	ャレ0	80%	OL＇	68＇S	9ヤ＇S	ヨNOZ WZ＾	
66.0	86\％	09＇66	ZGOL	06	810	010		0ヤ＇G	0ヤ゙G	NOI૭ヨy Оヨn	$\varepsilon 乙$
06°	60 ${ }^{\circ}$	09＊66	ヶ901	S\＆	レレ0	200	OL®	6でG	9ャ゙	NOIVヨy dS＾	乙乙
98＇レ	G6．	09＇66	LOLレ	G\＆	ELO	200	OL｀	くヤツ	OG｀9	NOI૭ヨy ๑ヨ	Lて
LV．し	66＇1	0G＇66	6601	SZ	いい	20.0	OL＇	LE＇G	Sカ＇s	ヨNOZ \forall ¢ Λ	
88°	00＇Z	09＇66	E801	0ε	800	80°		0＇｀${ }^{\text {¢ }}$	OG＇G	NOIOヨy 9M	OZ
じレ	LI＇Z	09＇66	GGIL	O1	200	90.0	01．$¢$	\＆て＇G	$6 \varepsilon^{\circ} \mathrm{G}$	NOIOヨy İy	61
G1．し	G81	09＇66	6GOL	Gt	910	800	OL｀	SガG	Lヤ＇G	NOIQヨy INS	81
98＇レ	09＇レ	09＇66	8ヤOレ	S8	0Z．0	ELO		$9 \varepsilon^{\prime} \mathrm{S}$	98＇S		
G61	6G＇\downarrow	09＇66	9801	G8	Gl．0	レレ0		$6 \varepsilon^{\prime} \mathrm{G}$	6\＆＇G	NOI૭ヨy רnyy	$\angle 1$
S9＇1	0L゙レ	0G＊66	GZO1	OG	ャレ＇0	てし「0		レーツ	レーツ	NOI૭ヨy day	91
G61	EG＇レ	09＇66	LZO1	OZ1	L®0	910		6でG	6でG	NOI૭ヨy div	Sl
81．し	S6．1	09＇66	とLZレ	S9	いい0	80.0	018	0ヵ＇	ヤヤ＇S	ヨNOZ ヨy07）	
LL＇0	61＇Z	09＇66	くヤてし	07	Sl．0	レレ0	OL｀	LE＇G	SE＇G	NOI૭ヨy とıO	ャレ
OG＇	LL＇レ	0G＊66	L8てし	08	200	900	01．${ }^{\text {c }}$	カヤツ	6ヤ＇G	NOI૭ヨy 700	$\varepsilon \downarrow$
レーレ	ع8．1	0G＇66	L0E1	G6	200	$\bigcirc 0.0$	OL｀	ZS＇G	9G＇G	NOI૭ヨy y	てレ
E9＇レ	七61	09＇66	てOZレ	St	20.0	90°	01．${ }^{\text {c }}$	ES＇S	ES＇S	ヨNOZ ชW女y	
08°	Z0＇Z	09＇66	とLレレ	0ヶ	800	S0．0	01．$¢$	$6 \nabla^{\circ}$	LG＇G	NOIפヨy 7M	い
$0 \varepsilon^{\prime} \downarrow$	90＇Z	0G＇66	91をレ	SE	200	90°		$\downarrow \mathcal{C}^{\text {¢ }}$	$\downarrow \mathcal{G}^{\circ} \mathrm{G}$	NOIפヨy WW\％	OL
S6． 1	SL＇レ	09＇66	LLレレ	S9	600	$90 \cdot 0$		$\angle \nabla^{\text {c }}$	\angle ーツ	NOI૭ヨy gav	6
06．	68^{\prime}	09＊66	カOZレ	02	¢0．0	200		GG＇G	GG＇G	NOIפヨy 8ZN	L
S6．	86．	09＇66	9Lレレ	0t	800	900	OL®	LG＇G	8G＇9	NOIפヨy ywdy	8
09＇レ	6L＇レ	09＇66	6とレレ	S6	レー0	20.0	OL＇	LE＇G	カヤ＇S	ヨNOZ OAH	
L．＇レ	181	09＇66	くヤOレ	St	OLO	01．0		\＆ャワ	とャ゙G	NOIפヨy yaw	9
$6 て ゙ 1$	16.1	09＊66	StてL	S6	七0\％	S0\％		LG＇G	LG＇G	NOI૭ヨy 97N	G
S6．	GL゙レ	09＇66	9ZO1	G91	LLO	90°		$\angle \nabla^{\text {c }}$	Lヤツ	NOIפヨy ynaw	\checkmark
EL＇L	てL゙レ	09＇66	01عレ	OG	ャレ0	$80 \cdot 0$	01．$¢$	E0＇G	てE＇G	NOIOヨy y	ε
09＇0	レビて	0G＇66	096	0¢	て\＆＇0	ャレ＇0		ヤ0＇s	ヤ0＇s	3NOZ 1 入lo	व人H
ES ${ }^{\circ}$	て¢＇乙	09＇66	LS6	¢ ε	$88^{\circ} 0$	ELO		Z0＇9	Z0＇9	NOIOヨy OOS	乙
9900	$0 \varepsilon^{\prime}$ Z	0G＊66	696	0ε	Lて＇0	ャレ゙0		90G	90＇9	NOI૭ヨy ロ人H	1
（\％）ヨコロン $d \forall \searrow \forall S$ $\exists \mathrm{Z}$ 人 $\perp \mathrm{M} \exists \mathrm{N}$	sWy HY甘า NI ヨּוา \exists 빗 7 $\forall \perp$ O」＇〇ヘ \forall	\％NI NOI เヨヨาย	7dWy ดกา $7 \forall 10 \perp$	sWン＇HY甘า yヨd ${ }^{\text {SNOO }}$ ONIUdS	$\begin{gathered} \text { SNOI } \forall 777 \\ -\exists コ N \forall O \\ \text { HOヨW } \ddagger 0 \% \end{gathered}$	$\begin{gathered} \text { sWY 00001 } \\ \text { yヨd } \\ \exists \perp \forall y ~ व g ~ \end{gathered}$	0＾70＾ －	O＾70＾ H 1 M 7dWY OSH	0＾70＾ ıกOHIM	gNOZ ON ／NOIפヨy ר	
yOXヨNNV							7dW\％OSH				

REGION / ZONE WISE TARGETS ON COST PARAMETERS OF MED FOR THE

 YEAR 2009-10| SL NO. | REGION / ZONE | CPK ON HSD OIL IN PAISE | CPK ON TYRES \& TUBES IN PAISE | $\begin{gathered} \text { CPK ON } \\ \text { WORKSHOPS } \\ \text { IN PAISE } \end{gathered}$ | CPK ON STORES IN PAISE | CPK ON LUBRICANTS IN PAISE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | HYD | 662 | 39 | 47 | 28 | 13 |
| 2 | SD | 668 | 40 | 53 | 28 | 13 |
| HYD CITY ZONE | | 665 | 39 | 50 | 28 | 13 |
| 3 | RR | 670 | 63 | 30 | 36 | 12 |
| 4 | MBNR | 623 | 62 | 42 | 28 | 12 |
| 5 | NLG | 608 | 51 | 33 | 23 | 10 |
| 6 | MDK | 623 | 55 | 36 | 19 | 11 |
| HYDZONE | | 630 | 58 | 36 | 27 | 11 |
| 7 | KRMR | 603 | 39 | 32 | 22 | 12 |
| 8 | NZB | 604 | 43 | 31 | 22 | 12 |
| 9 | ADB | 619 | 48 | 35 | 23 | 13 |
| 10 | KMM | 605 | 45 | 26 | 17 | 12 |
| 11 | WL | 600 | 47 | 34 | 24 | 12 |
| KRMR ZONE | | 606 | 44 | 32 | 22 | 12 |
| 12 | NLR | 576 | 48 | 32 | 29 | 12 |
| 13 | OGL | 611 | 51 | 22 | 33 | 13 |
| 14 | CTR | 628 | 48 | 31 | 29 | 14 |
| NLR ZONE | | 609 | 49 | 29 | 30 | 13 |
| 15 | ATP | 638 | 66 | 49 | 35 | 14 |
| 16 | KDP | 616 | 57 | 47 | 23 | 14 |
| 17 | KRNL | 626 | 59 | 40 | 28 | 14 |
| CDP ZONE | | 627 | 61 | 45 | 29 | 14 |
| 18 | GNT | 611 | 47 | 28 | 23 | 13 |
| 19 | VJA | 630 | 44 | 34 | 29 | 14 |
| 20 | WG | 609 | 45 | 35 | 22 | 13 |
| VJA ZONE | | 618 | 45 | 32 | 25 | 13 |
| 21 | EG | 610 | 43 | 36 | 25 | 14 |
| 22 | VSP | 617 | 42 | 45 | 32 | 15 |
| 23 | NEC | 609 | 49 | 47 | 24 | 14 |
| VZM ZONE | | 612 | 45 | 42 | 27 | 14 |
| COPORATION | | 622 | 49 | 37 | 27 | 13 |

TARGETS OF AGTGREGATE LIVES FOR 2009-10														
ZONES	ENGINE		FIP		GEAR BOX		FRONT AXLE		Rear AXLE		ALTERNATOR		SELF STARTER	
	NEW	RC												
	LIFE IN LAKH KMS													
LEYLAND AREA														
HYD (U)	6.50	3.28	4.23	1.74	6.50	2.66	11.00	7.00	11.00	7.00	5.74	2.26	5.51	1.96
HYD (R)	7.00	3.61	5.00	1.91	7.00	2.66	11.00	7.00	11.00	7.00	5.98	2.30	6.00	1.83
KRMR	7.00	4.30	5.00	2.46	7.00	3.78	11.00	7.00	11.00	7.00	6.00	2.50	6.00	2.27
NLR	7.00	4.24	5.00	2.35	7.00	4.55	11.00	4.85	11.00	7.00	6.00	2.50	6.00	2.20
(OGL \& NLR)														
LEY. AREA	6.87	3.92	4.73	2.16	6.87	3.21	11.00	6.25	11.00	7.00	5.90	2.40	5.80	2.06
TATA AREA														
VJA (U)	6.50	3.17	4.46	2.50	5.77	3.14	9.00	5.58	9.00	6.00	4.97	2.50	5.27	1.98
VJA (R)	7.00	3.26	4.39	2.50	6.50	3.13	9.00	4.86	9.00	5.34	5.48	2.50	5.81	2.14
VZM (U)	6.50	3.07	4.72	2.50	6.00	2.86	9.00	5.71	9.00	6.00	4.32	2.33	5.82	1.89
VZM (R)	7.00	3.12	4.00	2.50	6.50	3.37	9.00	4.86	9.00	5.41	5.25	2.42	5.99	2.03
KDP	7.00	2.52	5.00	1.85	6.50	3.12	9.00	3.51	9.00	4.03	6.00	2.50	6.00	2.17
NLR (CTR)	7.00	2.52	3.56	1.72	6.35	2.38	9.00	2.86	9.00	5.08	4.89	2.05	6.00	1.55
TATA AREA	6.97		30	2.18	6.42	3.02	9.00	4.06	9.00	4.87	5.41	239	5.98	2.00

